XAI on Reinforcement Learning: Explaining Tic Tac Toe moves

Data Mining and Machine Learning

Martin Heckel January 13, 2022

University of Applied Sciences Hof

Outline

Introduction

Backgrounds

Reinforcement learning

Tic Tac Toe

eXplainable AI (XAI)

Tic Tac Toe and XAI

Local Interpretable Model-Agnostic Explanations (LIME)

Introduction

Introduction

- Tradeoff between performance and explainability of ML models
- · Many "real-world" decisions have to be explainable
- · Other decisions have not to be explainable but it helps trusting the model

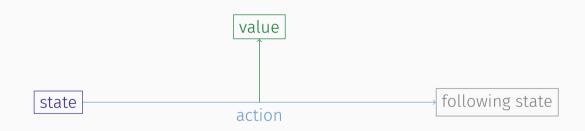
Introduction

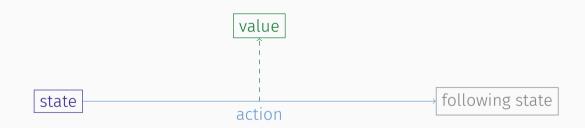
Machine Learning [1]

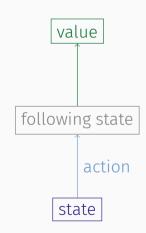
- Trac
- · Mar
- Ot

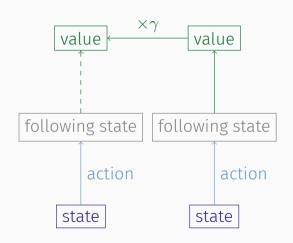
nodel

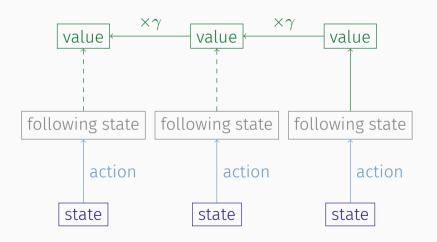
Backgrounds

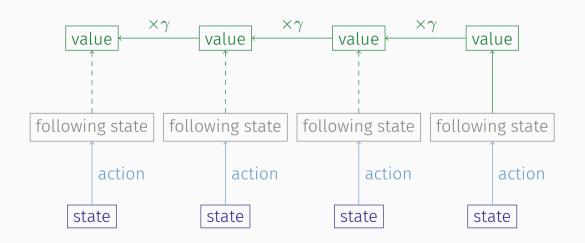












Tic Tac Toe - Architecture

- State is encoded as Vector of size 18
 - · "1" means that a field is taken, "0" means that it is free
 - First 9 fields represent the game field of the first player
 - Other 9 fields represent the game field of the other player
- Action is encoded as a vector of size 9
 - Field with the highest value is used as action
- Values are applied in training in a way that the action should have the specified value for the state

Tic Tac Toe - Architecture

- It is possible to choose between several opponents:
 - · Random does any random turn (that turn might be invalid)
 - · Easy does any valid random turn
 - · Medium does any valid random turn and wins when possible
 - Hard does any valid random turns, wins when possible and avoids the opponent to win when possible otherwise
 - Optimal implements a backtracking algorithm (minimax) and plays optimal (wins or plays a draw)
 - · Network uses the trained network to do turns

eXplainable AI (XAI)

- Goal: Explain decisions of a neuronal network in a way that is understandable by humans
- · Distinction by the time the explanation is created
 - · Post-Hoc: Explanation is created after the network has done the prediction
 - Intrinsic: Explanation is created while the network does the prediction
- · Distinction by relation to the model
 - Model agnostic: Independent of the model, generates inputs and uses model outputs for calculation (black box)
 - **Model specific**: Dependent of the model, uses its inner workings for calculation (*white box*)
- Distinction by explanation scope
 - · Global: Explains the model for all possible inputs
 - · Local: Explains the model for one specific input

Tic Tac Toe and XAI

- **Hypothesis**: There should be exactly one explanation for a decision made by a deterministic algorithm. Everything else is not an explanation but an interpretation.
- Initial idea: Use multiple explanation algorithms to explain the same decision and verify if the return the same explanation

Tic Tac Toe and XAI

- **Hypothesis**: There should be exactly one explanation for a decision made by a deterministic algorithm. Everything else is not an explanation but an interpretation.
- Initial idea: Use multiple explanation algorithms to explain the same decision and verify if the return the same explanation
- Problem: Unable to find any library that works with the network layout used (the models I found in the papers were model specific for RL)

Tic Tac Toe and XAI

- **Hypothesis**: There should be exactly one explanation for a decision made by a deterministic algorithm. Everything else is not an explanation but an interpretation.
- Initial idea: Use multiple explanation algorithms to explain the same decision and verify if the return the same explanation
- Problem: Unable to find any library that works with the network layout used (the models I found in the papers were model specific for RL)
- · Workaround: Use a modified version of LIME and manually implement it

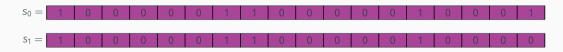
Local Interpretable Model-Agnostic

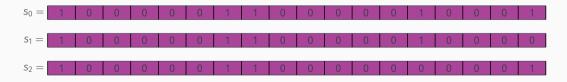
Explanations (LIME)

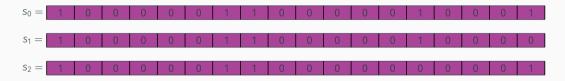
Local Interpretable Model-Agnostic Explanations (LIME)

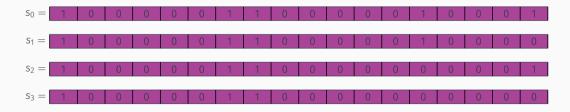
- · Can be used to identify "relevant" parts of images
- Split the image into parts and conduct the prediction for the single parts ("remove" other parts)
- If the predicted probability for the class is higher than for the entire image, that part can be marked as "relevant"
- Explaination is the combination of all "relevant" parts

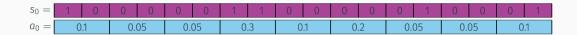
- · The state of the game is used in input
- The output is a list of action probabilities
- · Idea: Generate "other versions" of the sate and predict the action
 - · Set the fields that are used by the player or the opponent to "empty"
 - · Query the prediction for each generated "other version" of the state
 - add the predicted value of the resulting state to the sums of all state fields that were active (weight with the distance to the original input)
 - · Normalize the results

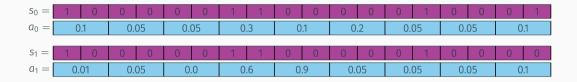


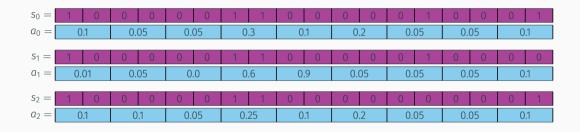


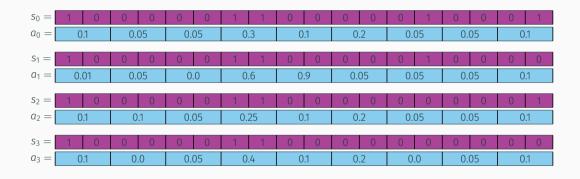


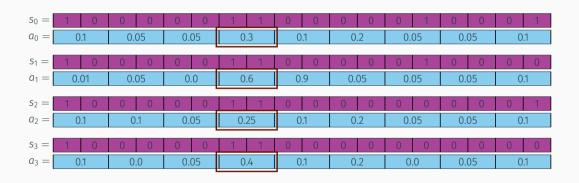


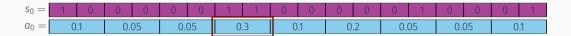


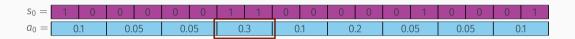


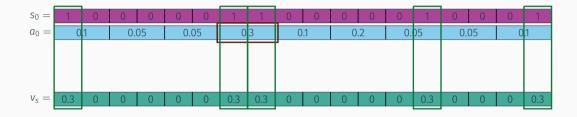


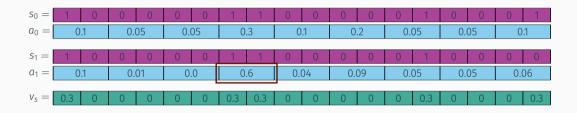


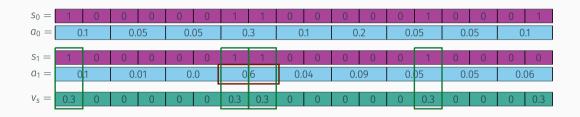


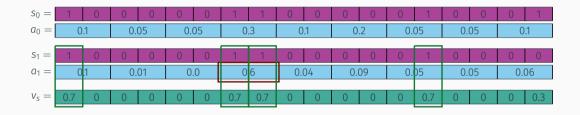


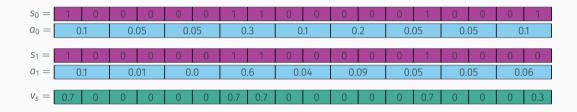


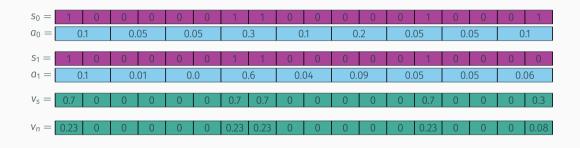


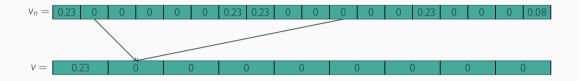


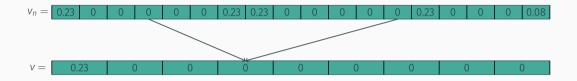


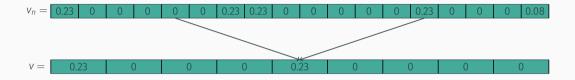


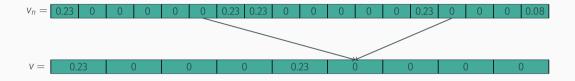


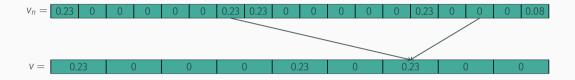




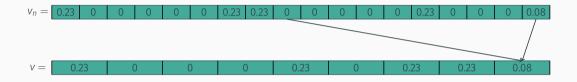












V =	0.23	0	0	0	0.23	0	0.23	0.23	0.08

Demo 1

Does this work at all?

Demo 2

Inspect the ML model

Questions?

References i

1] Randall Munroe. Machine Learning. URL: https://xkcd.com/1838/ (besucht am 11.01.2022).