Verifying DRAM Addressing in Software

<u>Martin Heckel</u>^{1,2}, Florian Adamsky², Jonas Juffinger¹, Fabian Rauscher¹, and Daniel Gruss¹

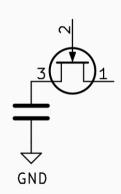
September 23, 2025

- ¹ Graz University of Technology
- ² Hof University of Applied Sciences

Outline

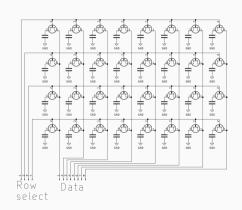
Background

DRAM Addressing Function Reverse-Engineering

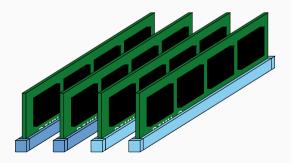

DRAM Addressing Function Verification

Row-Conflict Covert Channel on DDR5

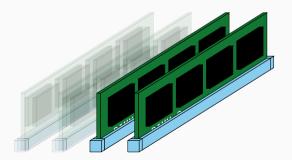
Background

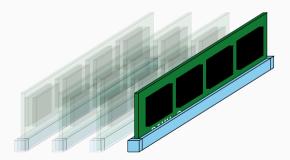

DRAM - Cells

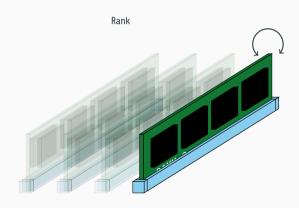
- A single cell consists of:
 - · Capacitor storing the data in form of electric charge
 - Transistor controlling the access to the capacitor
- Reading procedure: Enable the control pin and read the voltage at the access pin
- Writing procedure: Apply the level that should be written to the access pin and enable the control pin

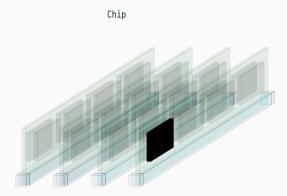


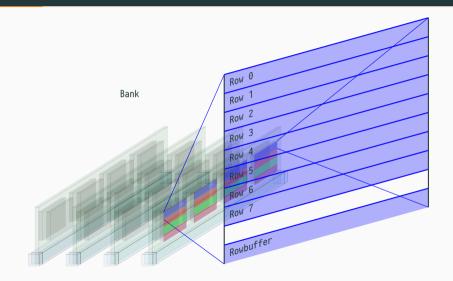
DRAM - Array

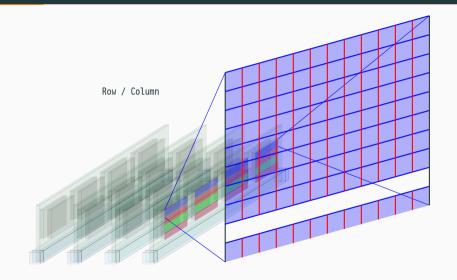

- · Multiple cells are organized in an array
- Control pins of the cells connected in rows (only entire rows can be enabled)
- Access pins of the cells conneted in columns
- Capacitors loose chage over time, so it is required to refresh the cells periodically (by default 64 ms for DDR3 and DDR4, 32 ms for DDR5)

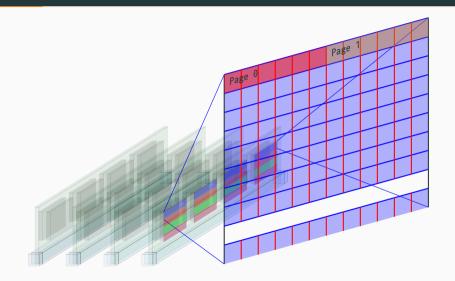

System DRAM

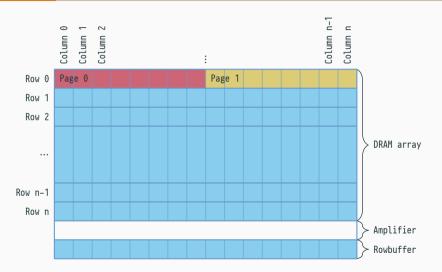



Channel









Structure within a DRAM bank

DRAM Addressing

- · Data is stored in physical memory:
 - Channel
 - · DIMM
 - Rank
 - Bank
 - Row
 - · Column
- The Memory Controller translates physical addresses to memory locations

DRAM Addressing

· Data is stored in physical memory:

```
C decode-dimms

D

R

---=== Memory Characteristics ===--

B Maximum module speed

R Size

Banks x Rows x Columns x Bits

Ranks

C Ranks

1333 MT/s (PC3-10600)

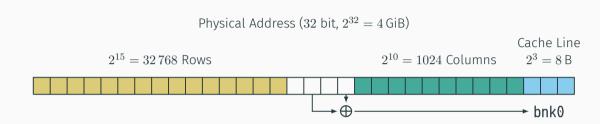

4096 MB

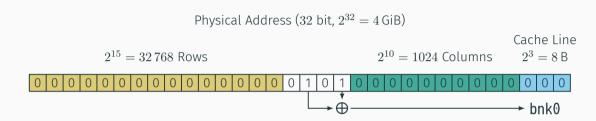
8 x 15 x 10 x 64

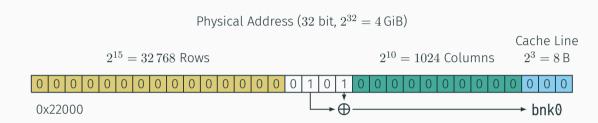
2
```

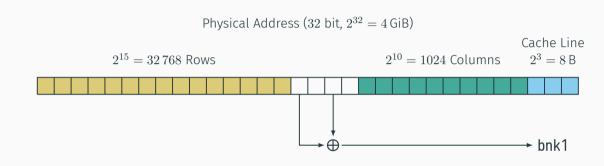
addresses to memory locations

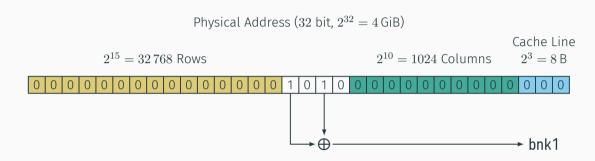
Physical Address (32 bit, $2^{32} = 4 \, \mathrm{GiB}$)

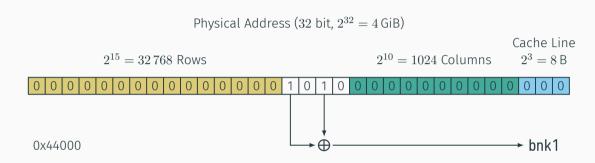

Physical Address (32 bit,
$$2^{32} = 4 \, \text{GiB}$$
)

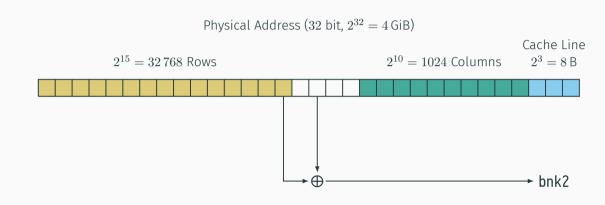

$$2^{15} = 32768 \text{ Rows}$$

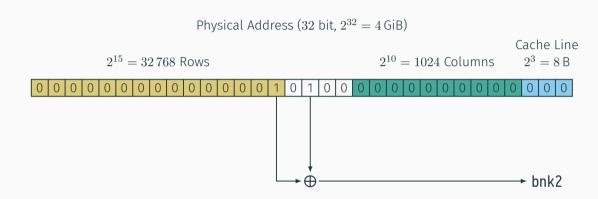

Physical Address (32 bit,
$$2^{32} = 4 \, \mathrm{GiB}$$
)

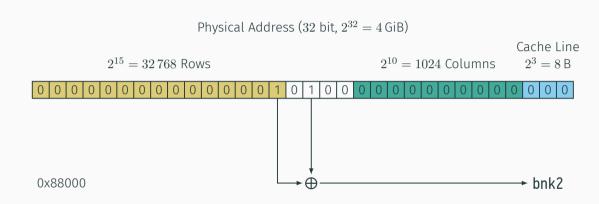

$$2^{15} = 32\,768 \; \text{Rows}$$

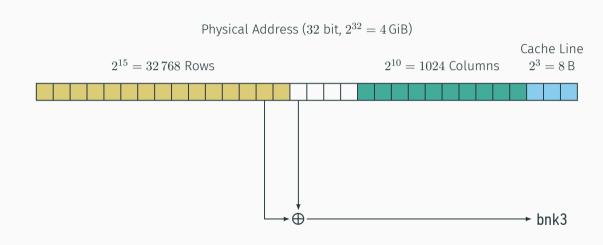

$$2^{10}=1024$$
 Columns

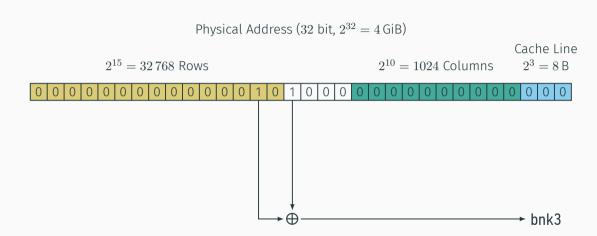


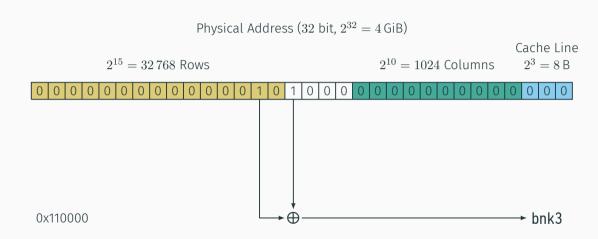


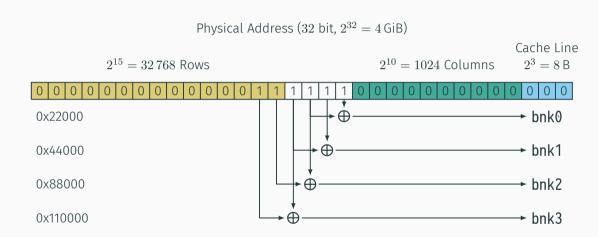


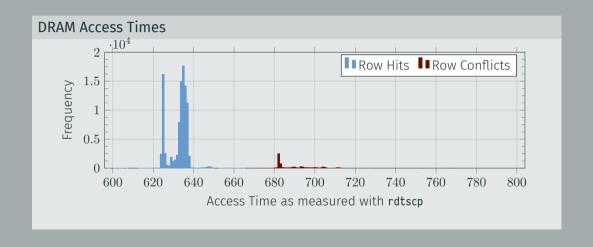












Reverse-Engineering

DRAM Access Times

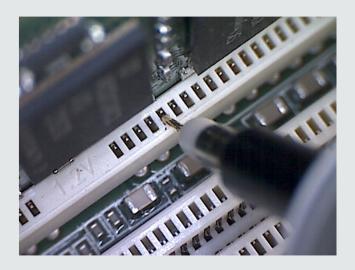
- The row buffer is shared among all rows in one bank
- · Reading a row from the DRAM array is destructive
- Accesses to different rows at the same bank require the content of the row buffer to be restored to the DRAM array first (Row Conflict)
- Accesses to the same row at the same bank does not require restoring the row buffer and loading another row (Row Hit)
- · Row Hits are faster than Row Conflicts

DRAM Access Times

Grouping Addresses based on DRAM Access Times

- · Find threshold between Row Hits and Row Conflicts
- Access addresses alternatingly and compare access time t to the threshold t_{T}
 - $t < t_T \Rightarrow \text{Row Hit}$
 - $t > t_T \Rightarrow \text{Row Conflict}$
- · Idea: Group addresses with Row Conflicts together

DRAM Addressing Function Reverse-Engineering

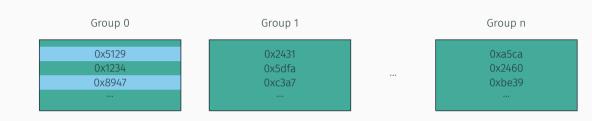

- Idea: Identify addressing functions that separate the groups based on all physical addresses in these groups
- · Solved for linear DRAM addressing functions by Pessl et al. [1]
- Still not solved for nonlinear DRAM addressing functions to the best of our knowledge

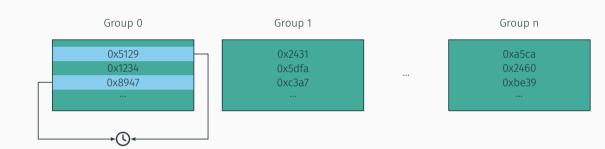
Problem: Verification of DRAM Addressing Functions

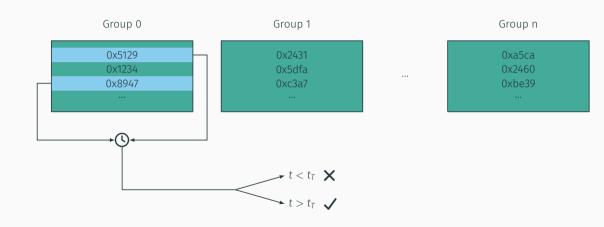
- The DRAM addressing functions reverse-engineered by a specific tool might not be correct
- Different tools might return different functions
- Typical verification: Try to use the reverse-engineered functions for a Rowhammer attack
- Problem: Rowhammer works also with random accesses as shown by Seaborn and Dullien [2]
- How can we verify DRAM addressing function correctness?

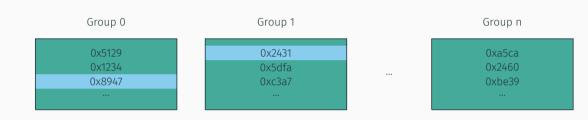
Problem: Verification of DRAM Addressing Functions

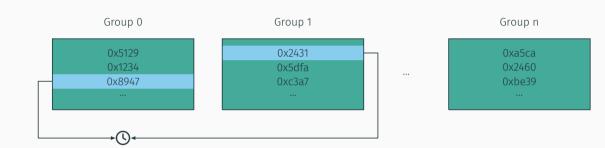
Verification with Physical Probing as used by Pessl et al. [1]

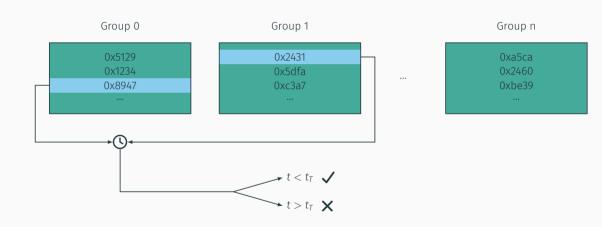


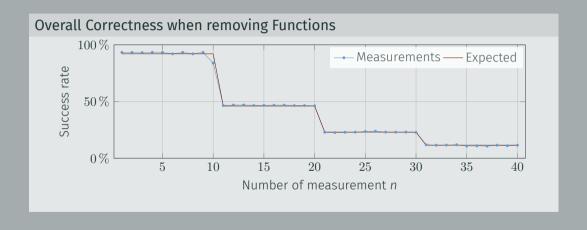

DRAM Addressing Function


Verification


- Group DRAM addresses based on the DRAM addressing functions that should be verified
- If correctly grouped:
 - Row Hits should be measured between randomly selected addresses of different groups
 - Row Conflicts should be measured between randomly selected addresses of the same group







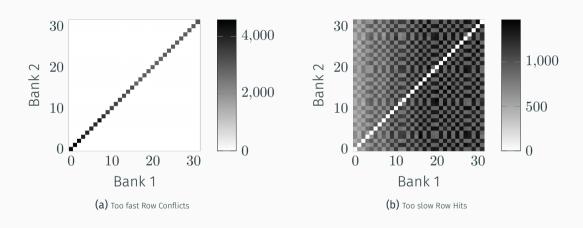
Verify single DRAM Addressing Functions

- Each DRAM bank addressing function returns one bit of the DRAM bank number
- When one function is removed, only half of the banks can be addressed with the remaining functions
- Therefore, the DRAM bank number should be incorrect for half of the addresses (which are still distributed over all banks).

Verify single DRAM Addressing Functions

DRAM Addressing Function Reverse-Engineering Tools on DDR3

	PoC	AFn Mask	$\%_{\mathrm{avg}}$	σ	$\%_{\min}$	$\%_{\text{max}}$		PoC	AFn Mask	$\%_{\mathrm{avg}}$	σ	$\%_{min}$	$\%_{\text{max}}$
	AMDRE				1.4%		5302	AMDRE		90.1 %	0.1	90.0 %	90.3%
5301	DRAMDIG			0.1	92.5%			DRAMDIG		89.8%	0.8	87.3%	90.2%
	DRAMA		43.9%	34.1	8.3%	92.7%		DRAMA	T 998 :	42.3%	35.4	0.0%	90.1%
• ,	Dare		0.0%	0.0	0.0%	0.0%		Dare		0.0%	0.0	0.0%	0.0%
	TRRESPASS		0.0%	0.0	0.0%	0.0%		TRRESPASS		0.0%	0.0	0.0%	0.0%

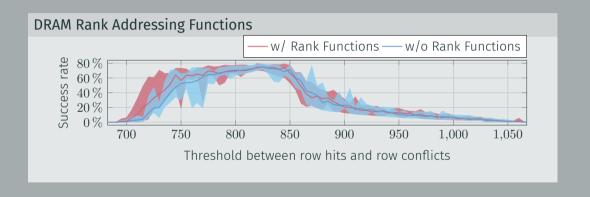

DRAM Addressing Function Reverse-Engineering Tools on DDR4

	PoC	AFn Mask	$\%_{\mathrm{avg}}$	σ	$\%_{\rm min}$	$\%_{\text{max}}$		PoC	AFn Mask	$\%_{\mathrm{avg}}$	σ	$\%_{\min}$	$\%_{max}$
401	AMDRE		85.4%	0.1	85.2%	85.5 %	(.,	AMDRE	#C:	23.2%	13.0	0.0%	38.8%
	DRAMDIG		84.8%	0.2	84.4%	85.1%		DRAMDIG		0.0%	0.0	0.0%	0.0%
	DRAMA		15.3%	15.6	0.0%	44.9%		DRAMA	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	13.9%	9.7	0.0%	23.1%
	DARE		76.8%	25.6	0.0%	85.5%		DARE	iii	14.4%	6.0	0.0%	21.6%
	TRRESPASS		84.1%	2.1	79.6%	85.6%		TRRESPASS		0.0%	0.0	0.0%	0.0%
	AMDRE		77.2%	0.2	76.9%	77.4 %	2	AMDRE		62.3%	0.5	61.8%	63.4%
0.1	DRAMDIG		42.3%	0.1	42.0%	42.5%		DRAMDIG		0.0%	0.0	0.0%	0.0%
405	DRAMA	2.54 0 000	6.7%	6.5	0.0%	21.3%		DRAMA	STORY.	16.0%	5.8	7.3%	21.8%
	DARE		29.6%	19.4	0.0%	42.4%		Dare		18.5%	1.6	16.1%	20.5%
	TRRESPASS		42.2%	0.1	42.0%	42.4%		TRRESPASS		0.0%	0.0	0.0%	0.0%

DRAM Addressing Function Reverse-Engineering Tools on DDR5

	PoC	AFn Mask	$\%_{avg}$	σ	$\%_{min}$	$\%_{max}$		PoC	AFn Mask	$\%_{avg}$	σ	$\%_{min}$	$\%_{max}$
P	AMDRE		42.9%	42.9	0.0%	86.0 %	S503	AMDRE		0.0%	0.0	0.0%	0.0 %
1	DRAMDIG		0.0%	0.0	0.0%	0.0%		DRAMDIG		0.0%	0.0	0.0%	0.0%
5501	DRAMA	LA PREMAR	5.1%	1.8	1.6%	6.3%		DRAMA		22.7%	0.6	21.8%	23.7%
٠, ا	Dare		6.3%	0.0	6.3%	6.4%		Dare	= :	1.2%	1.2	0.0%	2.6%
7	TRRESPASS		5.4%	1.2	2.9%	6.1%		TRRESPASS		0.0%	0.0	0.0%	0.0%
A	AMDRE		87.0 %	0.2	86.7%	87.3 %	S504	AMDRE		0.0 %	0.0	0.0 %	0.0 %
7	DRAMDIG		0.0%	0.0	0.0%	0.0%		DRAMDIG		0.0%	0.0	0.0%	0.0%
5502	DRAMA		4.0%	2.2	0.0%	5.5%		DRAMA	12.25	20.6%	6.9	0.0%	23.6%
, [Dare		4.6%	1.7	0.0%	5.4%		Dare		18.9%	9.5	0.0%	23.7%
1	TRRESPASS		5.4%	0.1	5.2%	5.5%		TRRESPASS		0.0%	0.0	0.0%	0.0%

Number of wrongly classified DRAM banks


Rank Addressing Functions

- · Some banks have more too slow Row Hits than others
- The pattern can be described with the linear function 0x0d and is applied to the numbers of banks
- The system has two ranks and one DIMM
- The effect only occurs on systems when the DIMM has two ranks
- · We assume that this is related to the rank select commands

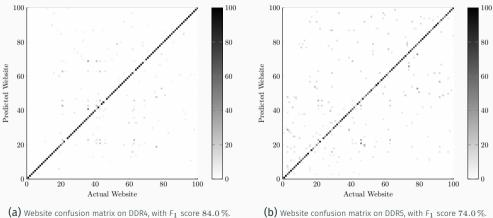
Experimental Evaluation of Rank Addressing Functions

- We selected the other group from which we take the address to measure the row hit in a way it is on the same rank
- Thereby, we see an increase in the success rate when applying rank functions
- This effect only happens when the threshold is selected in a specific range
- Otherwise, the row hits are either always classified correctly (threshold higher) or always classified wrong (threshold lower)

Experimental Evaluation of Rank Addressing Functions

Row-Conflict Covert Channel on DDR5

Row-Conflict Covert Channel


- Pessl et al. [1] introduced a covert channel based on the timing difference between Row Hits and Row Conflicts
- We re-implemented their approach and verified it on DDR3 (up to $2.23\,\rm Mbit\,s^{-1}$), DDR4 (up to $0.66\,\rm Mbit\,s^{-1}$), and DDR5 (up to $1.39\,\rm Mbit\,s^{-1}$)
- We implemented cross-VM synchronization, which enables the covert channel to work cross-VM on the same host

Website Fingerprinting Attack

- We utilized the covert channel described before to perform a website fingerprinting attack
- We measure the access times to DRAM addresses of different banks (one thread per bank, $n_{\text{proc}} 2$ threads on a system with n_{proc} logical CPUs)
- Next, a specified windows size ($100\,\mu s$) is used and the number of row conflicts in that window is stored for each measured bank
- We performed 100 accesses to every website and used a ML model to predict 100 websites ($80\,\%$ of the data for training, $20\,\%$ for validation).

Website Fingerprinting Attack – Experimental Evaluation

• We reached an F_1 score of 84 % on DDR4 and an F_1 score of 74 % on DDR5

Conclusion

- We have shown a time-based approach to verify single DRAM bank addressing functions without physical probing
- We have reverse-engineered Rank Addressing Functions
- · We reproduced the Covert Channel from Pessl et al. [1] on DDR5
- We utilized that Covert Channel to perform a Website Fingerprinting Attack on DDR4 and DDR5

Verifying DRAM Addressing in Software

<u>Martin Heckel</u>^{1,2}, Florian Adamsky², Jonas Juffinger¹, Fabian Rauscher¹, and Daniel Gruss¹

September 23, 2025

- ¹ Graz University of Technology
- ² Hof University of Applied Sciences

