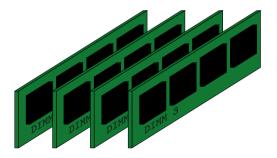
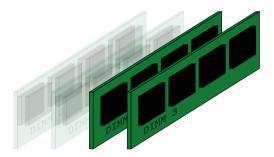
Ten Years of Rowhammer

A Retrospect (and Path to the Future)

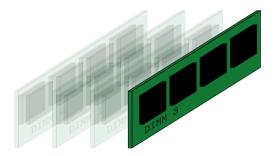
Martin Heckel^{1,2} (@lunkw1ll) Daniel Gruss¹ (@lavados) Florian Adamsky² (@c1t)

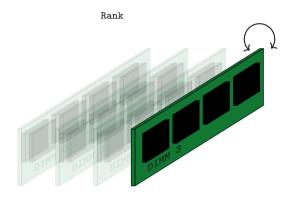


¹ Graz University of Technology

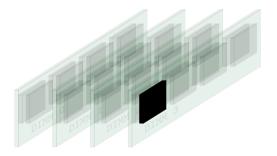

² Hof University of Applied Sciences

Origins and Root Cause

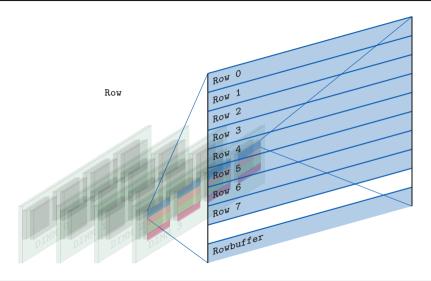

System DRAM

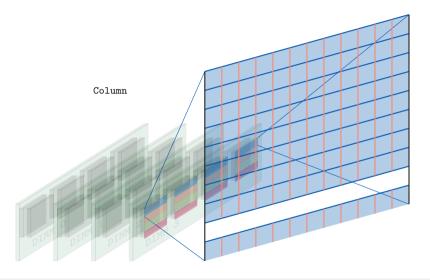


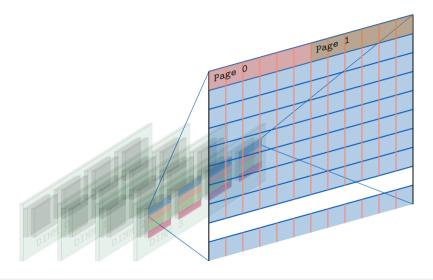
Channel

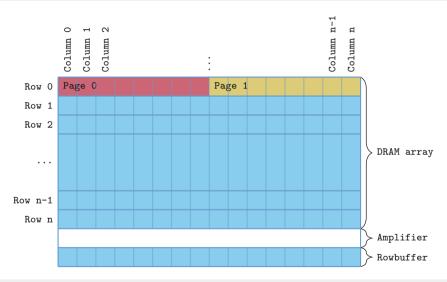


DIMM






Overview DRAM

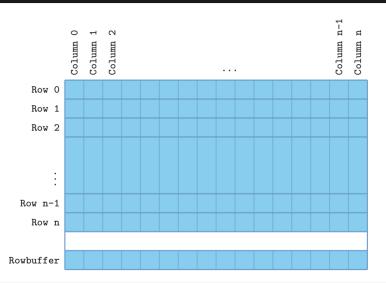

Overview DRAM

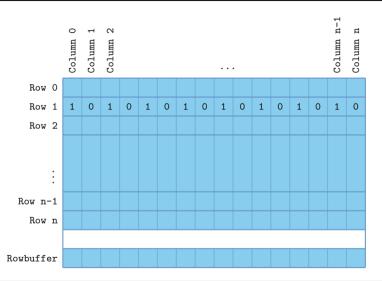
Overview DRAM

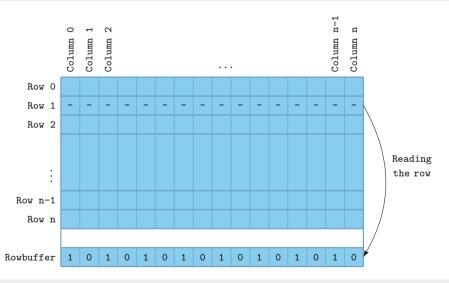
Structure within a DRAM bank

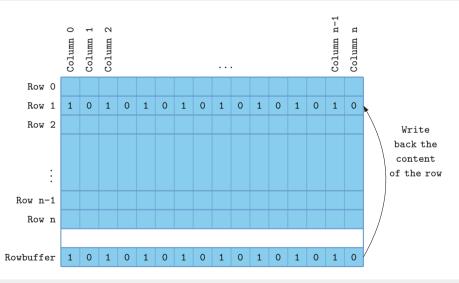
1. Capacitor loses its voltage over time

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)

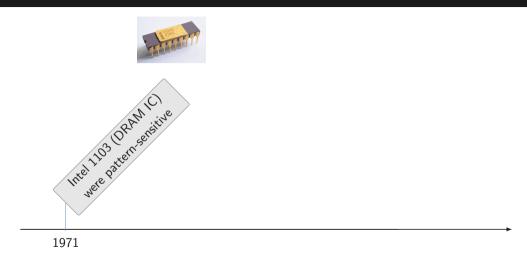

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)
 - Cells are normally refreshed every 64 ms

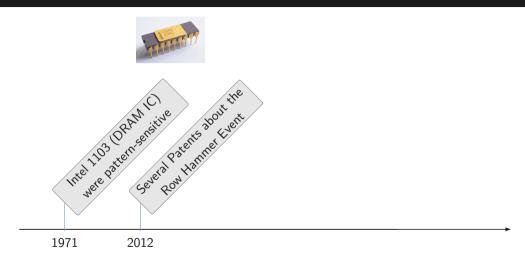


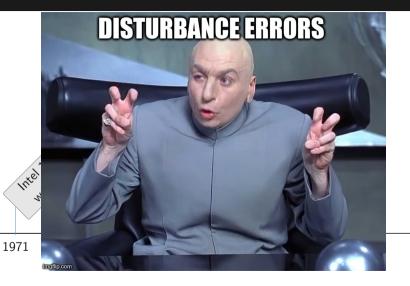

- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)
 - Cells are normally refreshed every 64 ms
- 2. When reading a row, we destroy the data in this row



- 1. Capacitor loses its voltage over time
 - Cells must be refreshed regularly (refresh rate)
 - Cells are normally refreshed every 64 ms
- 2. When reading a row, we destroy the data in this row
 - Intermediate memory in the row buffer



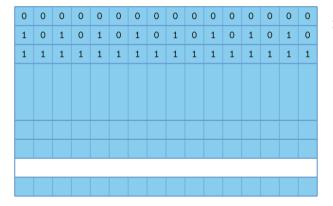



Historical Overview

Historical Overview

Historical Overview

• Memory rows are disturbed by frequent accesses



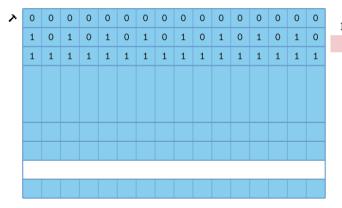
- Memory rows are disturbed by frequent accesses
- Results in bit flips in adjacent rows

- Memory rows are disturbed by frequent accesses
- Results in bit flips in adjacent rows
- Exploited through clever hammering techniques

Simple Example of Rowhammer


```
hammertime:

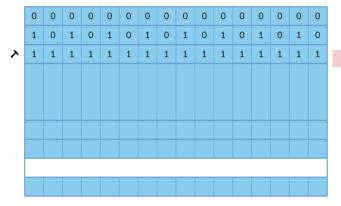
mov (Row 0), %eax

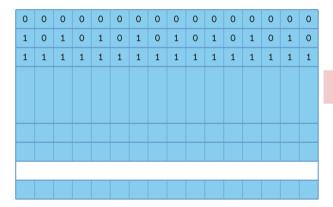

mov (Row 2), %ebx

clflush (Row 0)

clflush (Row 2)

jmp hammertime
```


Simple Example of Rowhammer


hammertime:

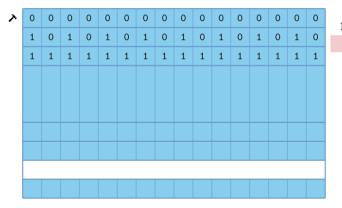
```
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime
```

Simple Example of Rowhammer


```
hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime
```

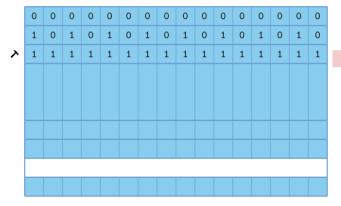


```
hammertime:


mov (Row 0), %eax

mov (Row 2), %ebx

clflush (Row 0)


clflush (Row 2)

jmp hammertime
```

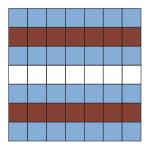

hammertime:

```
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime
```

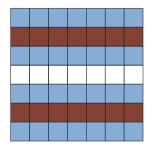


```
hammertime:
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime
```

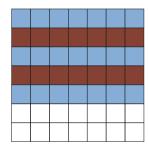
We can touch this!

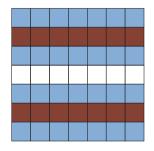


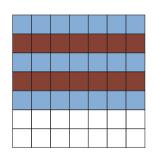
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

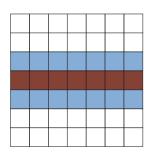

hammertime:

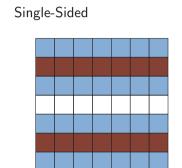
```
mov (Row 0), %eax
mov (Row 2), %ebx
clflush (Row 0)
clflush (Row 2)
jmp hammertime
```



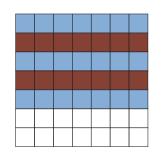



Double-Sided

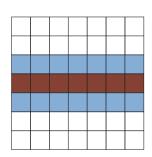




Double-Sided



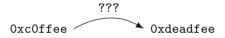
One-Location

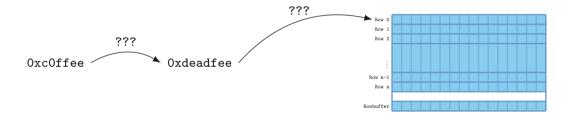


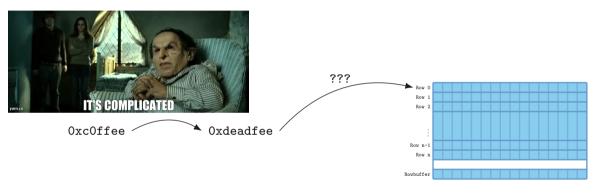
Double-Sided

One-Location

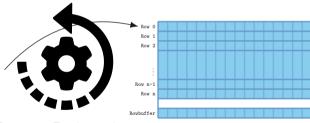
... and several more (e.g., many-sided hammering)

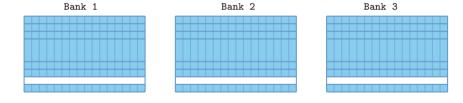

Wait a Minute!

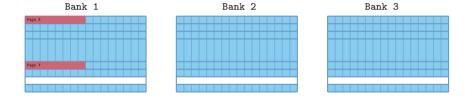

Wait a Minute!

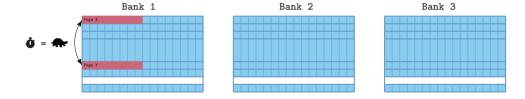


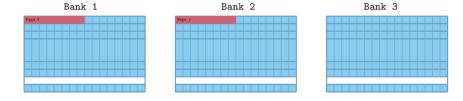
0xc0ffee

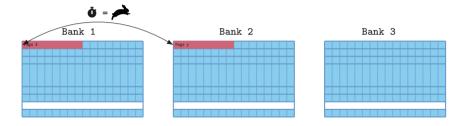


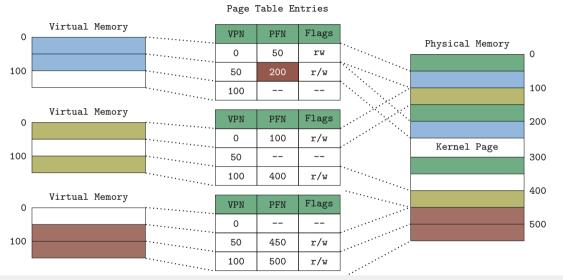


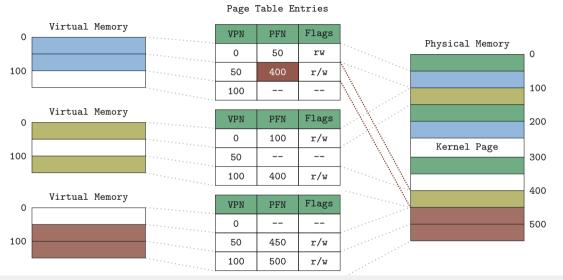



OxcOffee Oxdeadfee

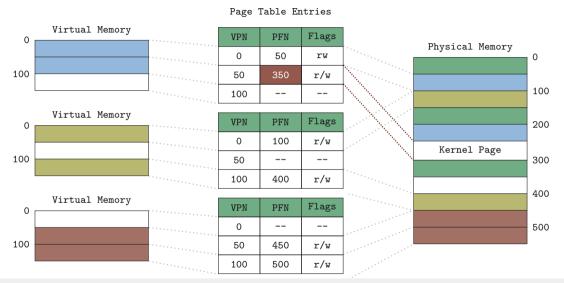


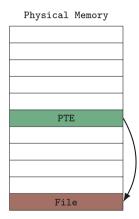

Reverse Engineering to the Rescue!



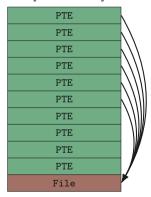


But how can we exploit it?

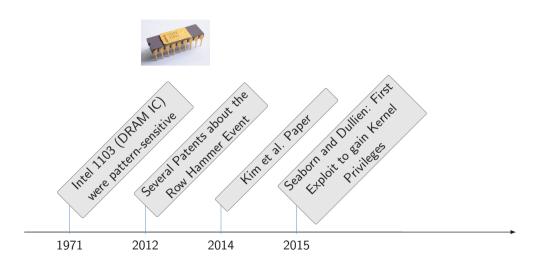

Reminder: Page Table Entries (simplified)


Reminder: Page Table Entries (simplified)

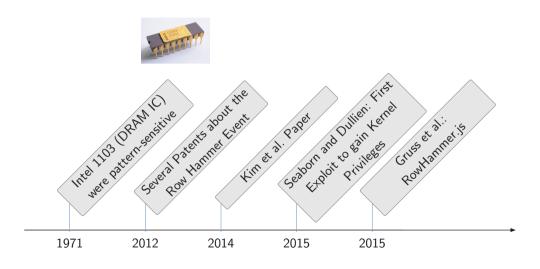
Reminder: Page Table Entries (simplified)



Increasing our chances with PTE Spraying

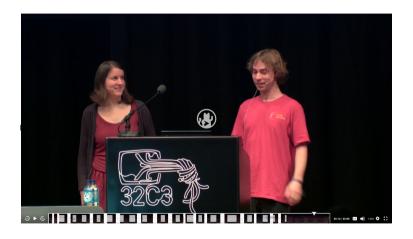


Increasing our chances with PTE Spraying


Physical Memory

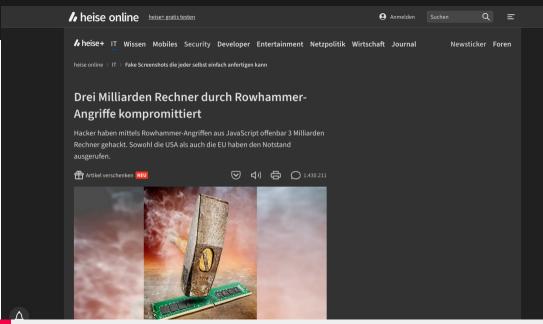
Historical Overview

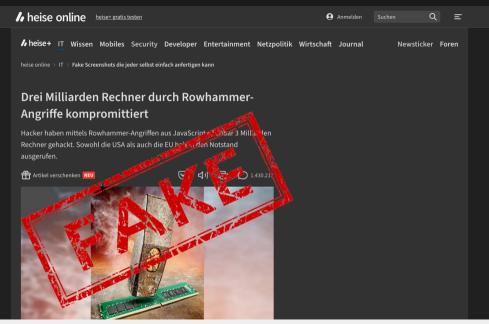
Historical Overview



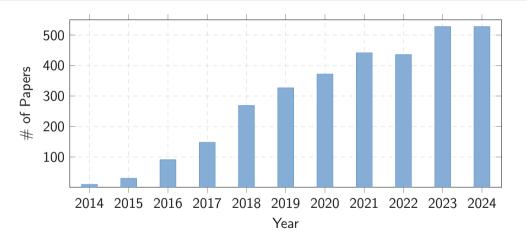
double-sided hammer

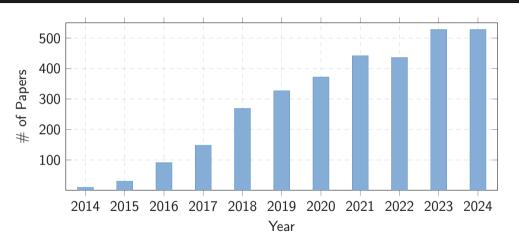
- double-sided hammer
- via JavaScript


- double-sided hammer
- via JavaScript
- without clflush


2015: Rowhammer.js

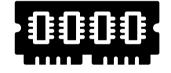
ROOT privileges for web apps!

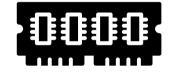


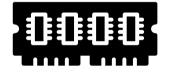


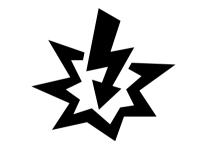
Scientific Papers about Rowhammer per Year

Scientific Papers about Rowhammer per Year

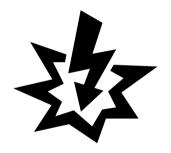

Too many works to discuss...






Reliability

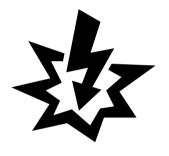

- Reliability
- Exploits



• Rowhammer enables privilege escalation attacks

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:


- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)


- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!
 - ullet Flips reproducible (!?) o great for attacks

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!
 - ullet Flips reproducible (!?) o great for attacks

- Rowhammer enables privilege escalation attacks
- Bypassing memory isolation barriers
- Challenges:
 - High-Resolution Timers (for the side channel / reverse-engineering)
 - Differences between environments
 - Right amount of bit flips in the right locations!
 - ullet Flips reproducible (!?) o great for attacks (and PUFs...)

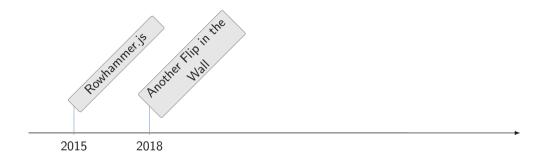
A Cat and Mouse Game

• Usually systems have a refresh rate of 64 ms

• Usually systems have a refresh rate of 64 ms

- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2–4 times

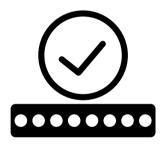
- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2-4 times
- More power is used



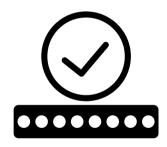
- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2–4 times
- More power is used
- \bullet Will delay the requested data \to less performance

- Usually systems have a refresh rate of 64 ms
 - Can be increased by 2–4 times
- More power is used
- \bullet Will delay the requested data \to less performance
- Will not prevent Rowhammer

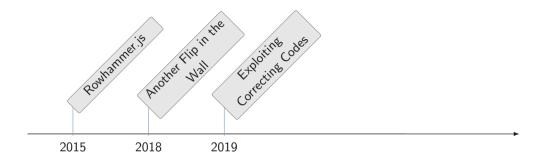
Cat and Mouse Game



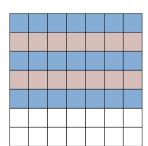
Not just opcodes ightarrow 29 exploitable bit flips in sudo



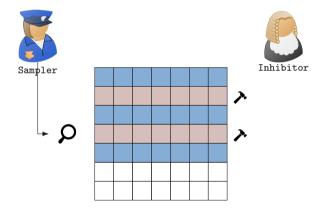
• ECC stores extra parity bits next to the data

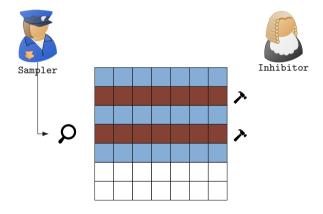


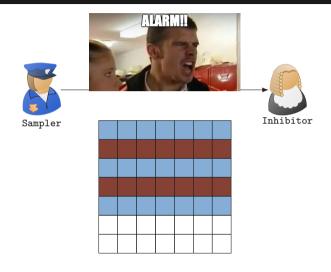
- ECC stores extra parity bits next to the data
- but it can be bypassed

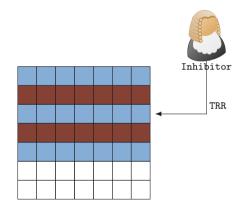


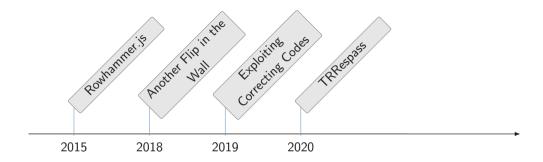
- ECC stores extra parity bits next to the data
- but it can be bypassed
- ullet reverse-engineering + multiple bit flips in the right locations o ECC bypassed

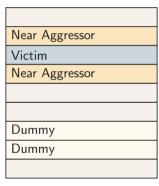

Cat and Mouse Game

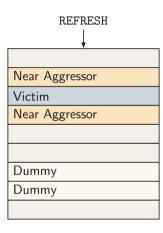


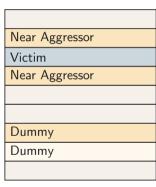


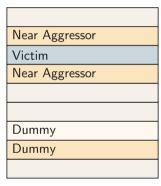


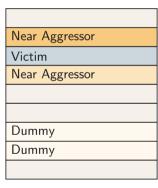


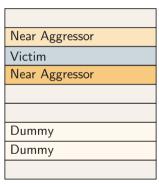


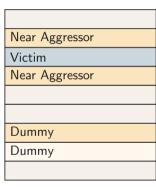


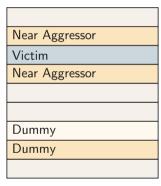


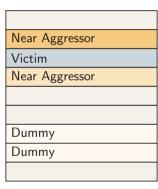

Cat and Mouse Game









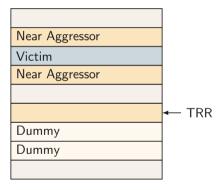


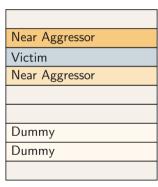
Near Aggressor

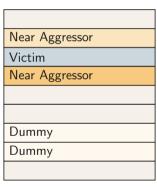
Victim

Near Aggressor

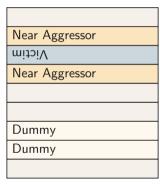
Dummy

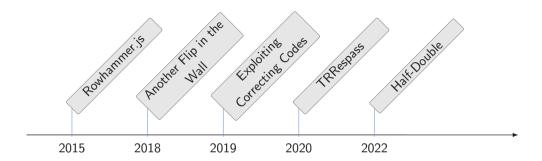

Dummy

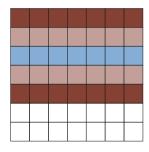

Near Aggressor
Victim
Near Aggressor

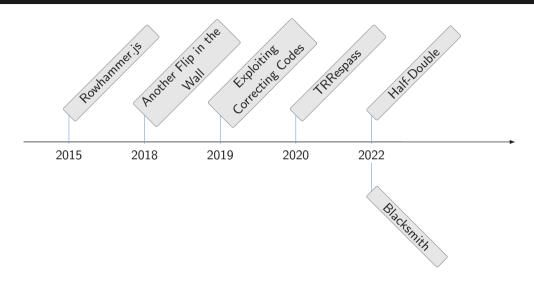

Dummy
Dummy

Near Aggressor
Victim
Near Aggressor


Dummy
Dummy




TRRespass


Cat and Mouse Game

Attacking with TRR: Half-Double

Cat and Mouse Game

• Non-uniform Rowhammer Fuzzer

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed

Phase: First hammer after start of a pattern

- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed

Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

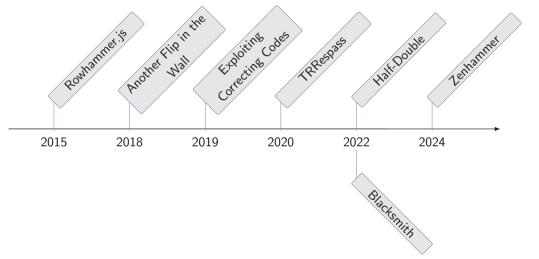
- Non-uniform Rowhammer Fuzzer
- Randomizes three characteristics:

Frequency: How often the aggressor row is accessed

Phase: First hammer after start of a pattern

Amplitude: How many consecutive hammers

Found bit flips in all 41 DIMMs tested



• Each row has its own activation counter

- Each row has its own activation counter
- Guarantee that every victim row is refreshed in a specific time frame

Cat and Mouse Game

• First Rowhammer bit flips on AMD

- First Rowhammer bit flips on AMD
- Different DRAM mapping, better refresh alignment

- First Rowhammer bit flips on AMD
- Different DRAM mapping, better refresh alignment
- First bit flips on DDR5

- First Rowhammer bit flips on AMD
- Different DRAM mapping, better refresh alignment
- First bit flips on DDR5 on 1 DIMM

Comprehensive Review of

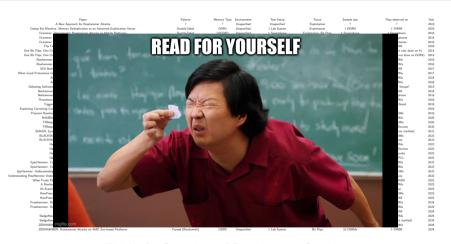
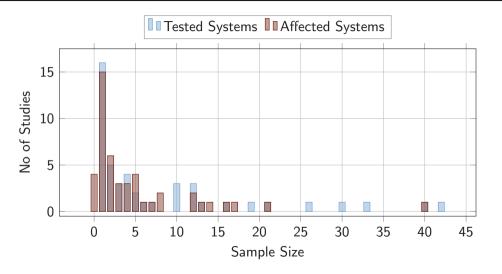
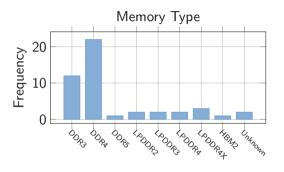
Rowhammer Papers

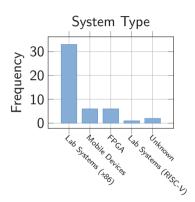
Comprehensive Review of Rowhammer Papers

Paper	Pattern	Memory Type	Environment	Test Setup	Focus	Sample size	Flips observed on	Year
A New Approach for Rowhammer Attacks	7	7	Unspecified	Unspecified	Exploitation	7	. ,	2016
Deduc Est Machina: Memory Deductication as an Advanced Exploitation Vector	Double-Sided	DDR3	Unspecified	1 Lab System	Exploitation	1 DIMM	1 DIMM	2016
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms	Double-Sided	LPDD82	Unspecified	1 Smartphone	Exploitation, Bit Flips	1 Smartphone	1 Smartphone	2016
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms	Double-Sided	LPDDR3	Unspecified	26 Smartphones	Exploitation, Bit Flips	26 Smartphones	17 Smartshones	2016
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms	Double-Sided	LPDD84	Unspecified	1 Smartphone	Exploitation, Bit Flips	1 Smartphone	0 Smartphones	2016
Flip Feng Shui: Hammering a Needle in the Software Stack	Double-Sided	DDR3	Unspecified	1 Lab System	Exploitation	1 DIMM	1 DIMM	2016
One Bit Flips, One Cloud Floor: Cross-VM Row Hammer Attacks and Privilege Escalation	Single-Sided, Double-Sided	DDR3	Unspecified	5 Lab Systems	Exploitation, Bit Flips	5 DIMMs	4 DIMMs (experiment only done on 4)	2016
One Bit Flips. One Cloud Floor: Cross-VM Row Harryner Attacks and Privilege Escalation	Single-Sided, Double-Sided	DDR4	Unspecified	1 Lab System	Exploitation, Bit Flips	1 DIMM	0 DIMMs (experiment not done on DDR4)	2016
Rowhammer is: A Remote Software-Induced Fault Attack in JavaScript	Double-Sided	DDR3	Unspecified	2 Lab Systems	Bit Flias	6 DIMMs	5 DIMMs	2016
Rowhammer is: A Remote Software-Induced Fault Attack in JavaScript	Double-Sided	DDR4	tREFI	2 Lab Systems	Bit Flips	4 DIMMs	2 DIMMs	2016
SGX-Bomb: Locking Down the Processor via Rowhammer Attack	Double-Sided	DD84	Unspecified	1 Lab System	Exploitation, Bit Flips	1 DIMM	1 DIMM	2017
When Good Protections Go Bad: Exploiting Anti-DoS Measures to Accelerate Rowhammer Attacks	Single-Sided, Double-Sided	DDR4	Unspecified	1 Lab System	Bit Flios	4 DIMMs	3 DIMMs	2017
Another Flip in the Wall of Rowbarroner Defenses	One-Location	DDR3	Unspecified	2 Lab Systems	Exploitation, Bit Flips	4 DIMMs	4 DIMMs	2018
Another Flip in the Wall of Rowbarroner Defenses	One-Location	DD84	Unspecified	1 Lab System	Exploitation, Bit Flips	2 DIMMs	2 DIMMs	2018
Defeating Software Mitigations Against Rowhammer: A Surgical Precision Hammer	Single-Sided, Double-Sided, Amplified	DDR3	Unspecified	2 Lab Systems	Exploitation	33 Memory Setups?	14 Memory Satupa?	2018
Nethammer: Inducine Rowhammer Faults through Network Requests	Double-Sided	DD84	Unspecified	3 Lab Systems	Exploitation, Bit Flips	1 DIMM	1 DIMM	2018
Nethammer: Inducing Rowhammer Faults through Network Requests	One-Location	LPDD82	Unspecified	1 Smartphone	Exploitation, Bit Flips	1 Smartphone	1 Senartohone	2018
Throwbarroner: Bowharroner Attacks over the Network and Defenses	Double-Sided	DD83	Unspecified	2 Lab Systems	Bit Flips	4 DIMMs	4 DIMMs	2018
Trippering Rowhammer Hardware Faults on ARM: A Revisit	Double-Sided	LPDDB3	Unspecified	1 Single Board Computer	Bit Flies	1 Single Board	1 Single Board	2018
Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks	Double-Sided	2	Unspecified	2	Exploitation	2	2 single count	2019
Pinpoint Rowhammer: Suppressing Unwanted Bit Flips on Rowhammer Attacks	Double-Sided	DDR3	Unspecified	1 Lab Soutem	Bit Flies	16 DIMMs	12 DIMMs	2019
RAMBleed: Reading Bits in Memory Without Accessing Them	Single-Sided, Double-Sided	DDR3	Unspecified	1 Lab System	Bit Flips	2 DIMMs	2 DIMMs	2020
TRRespass: Exploiting the Many Sides of Target Row Refresh	Many-Sided	DDR4	Unspecified	1 Lab System	Bit Flies	42 DIMMs	13 DIMMs	2020
TRRespass: Exploiting the Many Sides of Target Row Refresh	Many-Sided	LPDDB4X	Unspecified	13 Mobile Devices	Bit Flips	13 Mobile Devices	5 Mobile Devices	2020
SMASH: Synchronized Many-sided Rowharmer Attacks from JavaScript	Many-Sided	DD84	Unspecified	3 Lab Systems	Bit Flies	5 DIMMs	3 - 5 DIMMs (not clarified)	2021
BLACKSMITH: Scalable Rowhammering in the Frequency Domain	Fuzzed (Blacksmith)	DD84	Unspecified	10 Lab Systems	Bit Flies	40 DIMMs	40 DIMMs	2022
BLACKSMITH: Scalable Rouhammering in the Frequency Domain	Fuzzed (Blackemith)	LPDDR4X	Unspecified	JEDEC-complient developer board	Bit files	19 Origa	16 Oviga	2022
Half-Double: Hammering From the Next Row Over	Half-Double	DDR4	Unspecified	FPGA	Bit Fligs	3 DIMMs	2 DIMMs	2022
Half-Double: Hammering From the Next Row Over	Half-Double	LPDDB4X	Unspecified	7 Mobile Deview	Bit Flies	7 Mobile Devices	5 Mobile Devices	2022
Half-Double: Hammering From the Next Row Over	Half-Double	DD84	Unspecified	1 Notehnok	Bit Fligs	1 Notehnok	O Notehooks	2022
Half-Double: Hammering From the Next Row Over	Half-Druble	LPDD84	Unspecified	2 Min/PCs	Bit Flies	2 MiniPCs	0 MoiPCs	2022
SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks	Double-Sided	DDR3	Unspecified	1 Lab System	Exploitation, Bit Flips	3 DIMMs	3 DIMMs	2022
SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks	Many-Sided	DDR4	Umpecified	3 Lab System	Exploitation, Bit Flips	3 DIMMs	3 DIMMs	2022
SovHammer: Understanding and Exploiting RowHammer Under Fine-Grained Temperature Variations	Single-Sided	DDR4	Temperature	FPGA	Bit Flies	12 DIMMs	12 DIMMs	2022
Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices	Double-Sided	DDR4	50C	FPGA	Bit Flips	30 DIMMs (272 Chips)	64 Orign	2022
When Frodo Filax: End-to-End Key Recovery on FrodoKEM via Rowhammer	Double-Sided	DDR3	Umpecified	1 Lab System	Exploitation	2 DIMMs	i= 1 DIMM	2022
When Prodo Flips: End-to-End Key Recovery on ProdoREM via Rowhammer A Rowhammer Reproduction Study Using the Blacksmith Fuzzer	Fuzzed (Blacksmith)	DDR4	Unspecified	1 Lab System 4 Lab Systems	Bit Flios	2 DIMMs	E DIMMs	2022
An Experimental Analysis of RowHammer in HBM2 DRAM Chips	Double-Sided	HRM2	Umpecified	FPGA	Bit flips	1 Chip	1 Ove	2023
RowPress: Arrolifying Read Disturbance in Modern DRAM Chips	Single-Sided	DDR4	Temperature	FPGA	Bit Flios	21 DIMMs	21 DIMMs	2023
RowPress: Amplifying Read Disturbance in Modern DRAM Chips	Single-Sided	DDR4	Ununerified	1 Lab System	Bit Flips	1 DIMM	1 DIMM	2023
Presshammer: Rowhammer and Rowgress Without Physical Address Information	Fuzzed (Blacksmith)	DDR4	Unspecified	Lab System	Bit Flips	12 DIMMs	6 DIMMs	2023
Preshammer: Rowhammer and Rowpress Without Physical Address Information Presshammer: Rowhammer and Rowpress Without Physical Address Information	Single-Sided	DDR4	Unaperified	Lab Systems Lab Systems	Bit Flips	12 DIMMs	2 DIMMs	2024
RISC-H: Rowhammer Attacks on RISC-V	Double-Sided	DDR4	23C		Bit Flos	1 DIMM	1 DIMM	2024
		DDR4 DDR3		1 Lab System (RISC-V)		1 DIMM	1 DIMM 2 DIMMs	
SledgeHarmer: Amplifying Rowharmer via Bank-level Parallellum SledgeHarmer: Amplifying Rowharmer via Bank-level Parallellum	Many-Sided Many-Sided	DDR3	Unspecified	1 Lab System 1 Lab System	Bit Flips Bit Flips	2 DIMMs	2 DIMMs (not clarified)	2024 2024
			Unspecified				2 DIMMs (not clarified) 8 DIMMs	
ZENHAMMER: Rowhammer Attacks on AMD Zen-based Platforms ZENHAMMER: Rowhammer Attacks on AMD Zen-based Platforms	Fuzzed (Blacksmith)	DDR4 DDR5	Unspecified	3 Lab Systems	Bit Flips	10 DIMMs	1 DIMM	2024
ZENHAMMER: Mowhammer Attacks on AMD Zen-based Platforms	Fuzzed (Blackemith)	DDees	Unspecified	1 Lab System	Bit Flips	10 DIMMs	1 DIMM	2024

Table 1: Overview of Rowhammer Studies

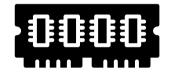
Comprehensive Review of Rowhammer Papers

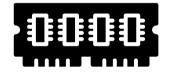





Table 1: Overview of Rowhammer Studies

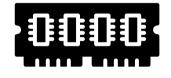
Rowhammer Papers: Sample Sizes

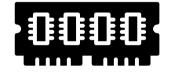



Rowhammer Papers: Experimental Setup



So, does it really matter?




• Reliability? Yes, but...

- Reliability? Yes, but...
- Exploits? Yes, but..

- Reliability? Yes, but...
- Exploits? Yes, but..
- Prevalence? Are even that many system affected?

- Reliability? Yes, but...
- Exploits? Yes, but..
- Prevalence? Are even that many system affected?
- \rightarrow We don't know!

Rowhammer Prevalence - What We Know

• Overall 378 DIMMs tested

Rowhammer Prevalence - What We Know

- Overall 378 DIMMs tested
- Overall 296 DIMMs (78.3 %) affected

Rowhammer Prevalence - What We Know

What do we need?

A Large-Scale Prevalence Study

• Real-world conditions on real systems

- Real-world conditions on real systems
- Large-scale prevalence observations

- Real-world conditions on real systems
- Large-scale prevalence observations
- Reproducibility of bit flips

- Real-world conditions on real systems
- Large-scale prevalence observations
- \bullet Reproducibility of bit flips (\to are Rowhammer PUFs even practical?)

Linux bundled with a set of tools to

Test and identify DRAM address functions

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips
 - Blacksmith, TRRespass, RowhammerJs, Rowhammer-Test, FlipFloyd, RowPress, HammerTool

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips
 - Blacksmith, TRRespass, RowhammerJs, Rowhammer-Test, FlipFloyd, RowPress, HammerTool
- No attacks/exploits

- Test and identify DRAM address functions
 - Drama, DRAMDig, TRRespass RE, Dare (Zenhammer), AMDRE
- Test Rowhammer patterns and document bit flips
 - Blacksmith, TRRespass, RowhammerJs, Rowhammer-Test, FlipFloyd, RowPress, HammerTool
- No attacks/exploits
 - No advantage in testing them on real-world systems

• Get a free bootable USB stick from us

Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

- Get a free bootable USB stick from us
- or download bootable ISO from https://FlippyR.am

- Get a free bootable USB stick from us
- \bullet or download bootable ISO from https://FlippyR.am
- → Run our tests while you don't need the system (e.g., while sleeping/at work)

- Get a free bootable USB stick from us
- or download bootable ISO from https://FlippyR.am
- ightarrow Run our tests while you don't need the system (e.g., while sleeping/at work)
- $\rightarrow\,$ Upload your results \rightarrow then they contribute to our study

• Everything is open source: https://FlippyR.am

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself
- Docker-Image is available as well

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it yourself
- Docker-Image is available as well
- ISO-Image booted via USB is best

- Everything is open source: https://FlippyR.am
- Build the ISO and flash it vourself
- Docker-Image is available as well
- ISO-Image booted via USB is best
 - (your own or ours, doesn't matter for us)

-

• Got the USB stick from us?

-

• Got the USB stick from us?

- Got the USB stick from us?
 - You know who we are

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - We don't spread malware → We would run into bigger problems if we would

Martin Heckel (@lunkw1ll), Daniel Gruss (@lavados), Florian Adamsky (@c1t)

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - \bullet We don't spread malware \to We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - \bullet We don't spread malware \to We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...
- Science is important but I still have concerns

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - \bullet We don't spread malware \to We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...
- Science is important but I still have concerns
 - Don't participate if you have concerns

- Got the USB stick from us?
 - You know who we are
 - This is a DFG-FWF research project
 - ullet We don't spread malware \to We would run into bigger problems if we would
- Should I disconnect all disks and peripherals? If you feel like it...
- Science is important but I still have concerns
 - Don't participate if you have concerns
 - Otherwise: please help us answering a question that we can't answer without you

• How relevant is Rowhammer on real systems?

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone

FITPPYRAM

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - $\bullet \ \ \mathsf{Keep} \ \mathsf{your} \ \mathsf{flippyr.am} \ \mathsf{USB} \ \mathsf{stick}$

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)
 - You can win a gift card (see website)

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)
 - You can win a gift card (see website)
 - Get your name in the acknowledgements of our study

- How relevant is Rowhammer on real systems?
- Academics cannot answer this alone
 - we need real users to know
- Other perks, if you want to:
 - Keep your flippyr.am USB stick
 - Get a flippyr.am t-shirt if you test at least 10 systems (limited stock)
 - You can win a gift card (see website)
 - Get your name in the acknowledgements of our study
 - Learn if your own hardware is affected

• Rowhammer: reliability issue + exploitable

- Rowhammer: reliability issue + exploitable
- Real-world prevalence still unclear

- Rowhammer: reliability issue + exploitable
- Real-world prevalence still unclear
- Join us: Contribute to the large-scale flippyr.am study!

Ten Years of Rowhammer

A Retrospect (and Path to the Future)

Martin Heckel^{1,2} (@lunkw1ll) Daniel Gruss¹ (@lavados) Florian Adamsky² (@c1t)

¹ Graz University of Technology

² Hof University of Applied Sciences