Epistemology of Rowhammer Attacks:

Threats to Rowhammer Research Validity

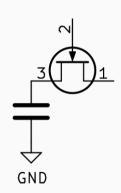
Martin Heckel^{1,2}, Hannes Weissteiner¹, Florian Adamsky², and Daniel Gruss¹

September 22, 2025

- ¹ Graz University of Technology
- ² Hof University of Applied Sciences

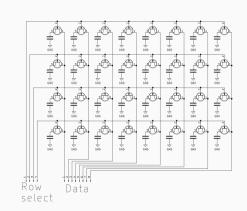
Outline

Background

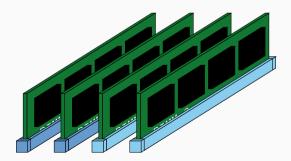

Methodology

Threats to Rowhammer Research Validity

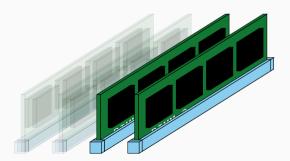
Background

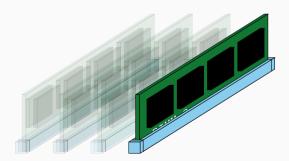

DRAM - Cells

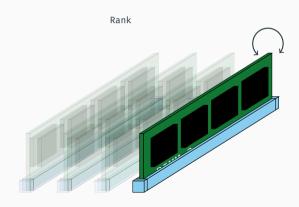
- · A single cell consists of:
 - · Capacitor storing the data in form of electric charge
 - Transistor controlling the access to the capacitor
- Reading procedure: Enable the control pin and read the voltage at the access pin
- Writing procedure: Apply the level that should be written to the access pin and enable the control pin

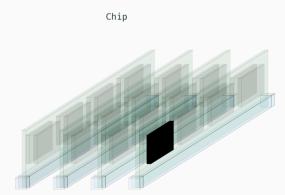


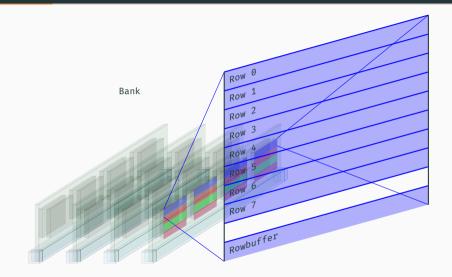
DRAM - Array

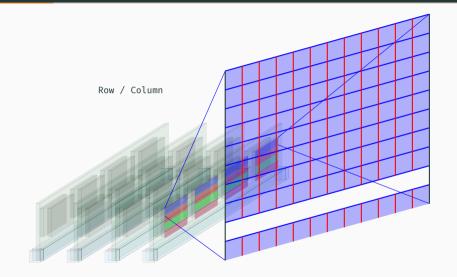

- · Multiple cells are organized in an array
- Control pins of the cells connected in rows (only entire rows can be enabled)
- Access pins of the cells conneted in columns (entire rows are accessed at once)
- Capacitors loose chage over time, so it is required to refresh the cells periodically (64 ms by default)

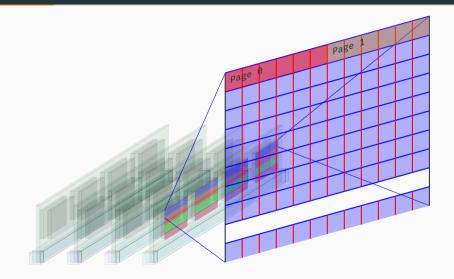

System DRAM

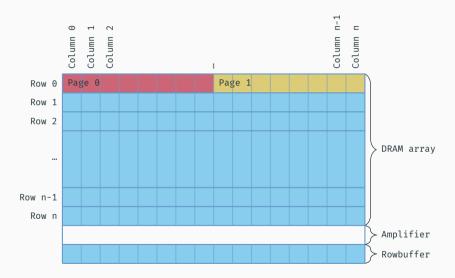



Channel

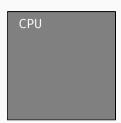



DIMM



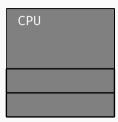


Structure within a DRAM bank

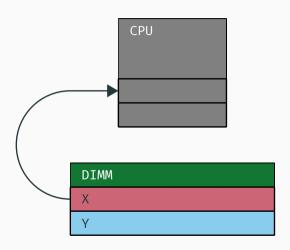


DRAM addressing

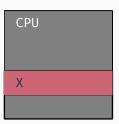
- · Data is stored in physical memory:
 - · Channel
 - · DIMM
 - Rank
 - · Bank
 - Row
 - · Column
- The Memory Controller translates physical addresses to memory locations



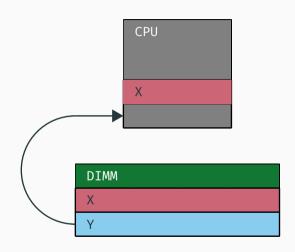

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

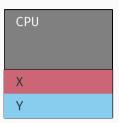

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



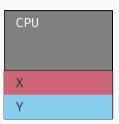

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



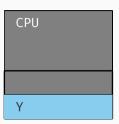

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



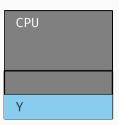

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



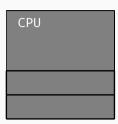

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

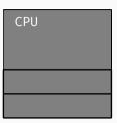

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```


```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

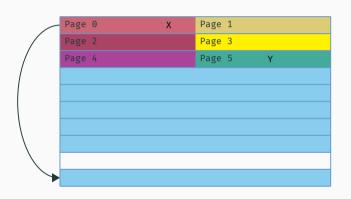

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

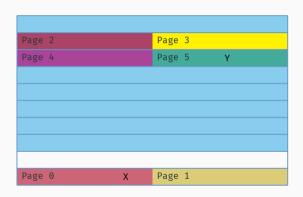

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



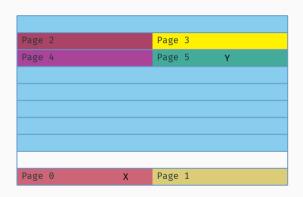
```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

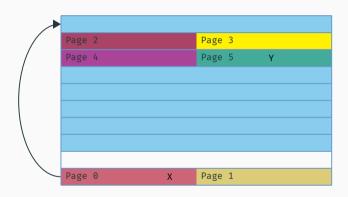


```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
mp hammer
```

Page 0	Χ	Page 1		
Page 2		Page 3		
Page 4		Page 5	Υ	


```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

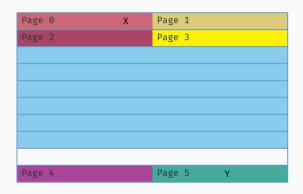
Page 0	X	Page 1		
Page 2		Page 3		
Page 4		Page 5	Υ	


```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
imp hammer
```

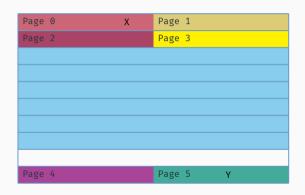


```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
imp hammer
```



```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```



```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
imp hammer
```



```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
mpp hammer
```

Page 0	Χ	Page 1		
Page 2		Page 3		
Page 4		Page 5	Υ	

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
imp hammer
```


Rowhammer

```
hammer:
mov eax, X
mov ebx, Y
clflush X
clflush Y
jmp hammer
```

Page 0	X	Page 1		
Page 2		Page 3		
Page 4		Page 5	Υ	

Source code from Kim et al. [1]

Rowhammer

Figure 1: Examples of rowhammer patterns

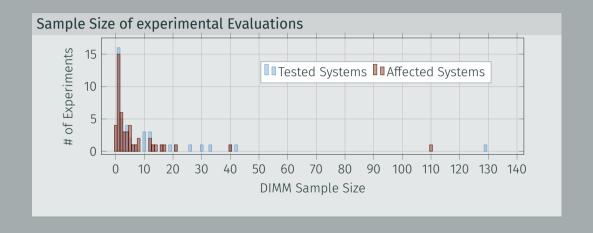
Rowhammer: Academia vs Real-World Exploitation

- · Academia:
 - The vast majority of systems is susceptible to Rowhammer
 - Exploitation of affected systems works in many cases
 - · Exploitation works on multiple different platforms (x86, ARM, etc.)
 - Increasing number of papers related to Rowhammer
- However, no known case of Rowhammer being used in real-world attacks to the best of our knowledge

Methodology

Methodology

- Google Scholar search for the word *Rowhammer*: 2509 publications
- Publications with \geq 5 mentions of the word *Rowhammer*: 463 publications
- Peer-reviewed papers that perform Rowhammer attacks: 55 publications
- Papers at A or A* conferences: 22 publications
- Added other relevant papers: 32 publications with 48 experimental evaluations


Threats to Rowhammer Research

Validity

${\mathcal T}$ 1 Sample Sizes Too Small

- · Multiple potential causes for bit flips:
 - **Bad memory cells**
 - 8[†] Temperature fluctuations
 - → Cosmic rays
 - Voltage fluctuations
 - · 🕍 Manufacturing variations

\mathcal{T} 1 Sample Sizes Too Small

\mathcal{T} 1 Sample Sizes Too Small

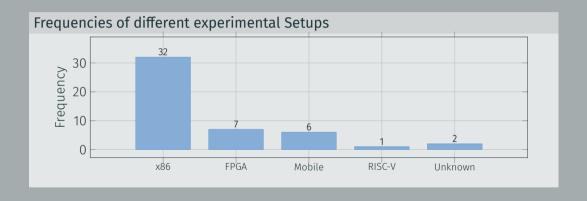
R1: DIMMs used in empirical research must be tested for other problems, e.g., using Memtest86 (except for integrated Rowhammer tests), to ensure that no other (non-Rowhammer) problems are present.

 $\mathcal{R}2$: Increase the sample size to \geq 30 DIMMs total, spread across 3 major vendors, each with at least 2 different capacities.

R3: Do more reproduction studies of published work to gain more insights regarding the prevalence. More venues should accept reproduction studies.

\mathcal{T} 2 Dependence on Elevated Attacker Privileges

- · Seaborn [2] demonstrated two exploits based on Rowhammer in 2015
- · Following, virtual-to-physical address mapping was made privileged
- Newer attacks use other concepts like uncached memory, Transparent Hugepages (THPs), or 1GB Hugepages
- Many prequisites of exploits have been mitigated as a reaction to the publication of these techniques
- Elevated attacker privileges make the attack more difficult to reproduce and may decrese trust in empirical results


T2 Dependence on Elevated Attacker Privileges

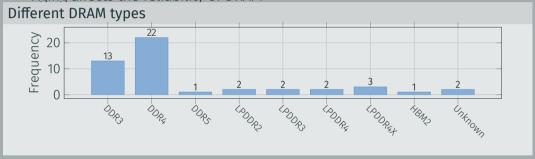
R4: Attacks should only be classified as such when assessed under realistic attack scenarios, and there should be a more apparent distinction between actual attacks and potential (theoretical) attacks.

\mathcal{T} 3 Uncertain Practical Applicability

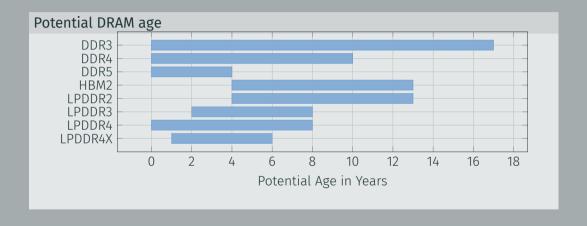
- · Some experiments are performed on:
 - Specialized hardware
 - Commodity hardware with extreme parameters
 - · Rowhammer simulators
- While essential for understanding the Rowhammer effect, these results cannot be directly applied to real-world attacks
- R4 applies again

\mathcal{T} 3 Uncertain Practical Applicability

\mathcal{T} 4 Comparability across Publications


- The position and number of bit flips depends on environmental parameters and the system and DIMMs that are evaluated
- · In some publications, the experimental setup is not described sufficiently
- Even DIMMs that are the same model are affected differently by Rowhammer
- Hard to compare novel and existing attacks

\mathcal{T} 5 Unspecified Age and Wear of Hardware


- · Aging affects the reliability of DRAM
- · Bit flips induced by Rowhammer can "burn in"
- The implementation of on-DIMM mitigations like TRR strongly depends on the vendor and model of the DIMM
- In many publications, these information are not submitted, which increases the difficulty of reproducing results

\mathcal{T} 5 Unspecified Age and Wear of Hardware

· Aging affects the reliability of DRAM

\mathcal{T} 5 Unspecified Age and Wear of Hardware

${\cal T}$ 5 Unspecified Age and Wear of Hardware

R5: Authors should publish the manufacturing date of the DIMMs used in experimental evaluation.

 $\mathcal{R}6$: Authors should submit information about the DIMMs' wear in experimental evaluation.

\mathcal{T} 6 Suboptimal Metrics for Comparison

- There are different metrics for the suscepbitility of systems:
 - · Absolute number of bit flips in a given time or memory area
 - · Minimal number of aggressor activations until the first bit flip
 - Percentage of times a bit flipped at a tested location
 - · Time until the first (exploitable) bit flip is observed
- Different metrics are hard to compare
- · Some metrics strongly depend on definitions, e.g., of exploitable

${\cal T}$ 6 Suboptimal Metrics for Comparison

 \mathcal{R} 7: Authors should use multiple metrics for bit flips to allow for better comparisons to other works.

Conclusion

- There is a significant discrepance between Rowhammer Results in academia and real-world exploitation
- We analyzed 32 publications with 48 experimental evaluations
- · We identified 6 threats to Rowhammer Research Validity
- · We identified 7 recommendations future research should follow

Epistemology of Rowhammer Attacks:

Threats to Rowhammer Research Validity

Martin Heckel September 22, 2025

- ¹ Graz University of Technology
- ² Hof University of Applied Sciences

